

Issue:

Credit hours: 2

Course Syllabus

Bachelor

Course information

Course#		Course	title		P	rerequisite
0240370		Human cell to	echnology			240233
	Cou	ırse type		Class ti	me	Room #
□ University R	Requirement	□ Faculty Req	luirement	9:45-10:3	5	2901
🛛 Major Requ	irement	\Box Elective	\boxtimes	am		
Compulsory				MW		

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Prof. Raida Khalil	914	ext. 2250	SM 11:00-12 am	R_khalil@philadelphia.edu.jo

Course Delivery Method

	Course Deli	very Method	
🛛 Physical	🗆 Onlir	ne 🗆 🛛	Blended
	Learnii	ng Model	
Precentage	Synchronous	Asynchronous	Physical
			100%

Course Description

Stem cells are undifferentiated cells that are capable of self-renewal and have the potential to develop into specialized cells types. Stem cells are important for development, reproduction, growth, healing, and homeostasis. We will explore several aspects of stem cell biology including the microenvironments that are required to maintain stem cells, asymmetric cell division, the genes required for stem cell fate, and the use of stem cells for medical applications. This course aims to provide a comprehensive overview of pluripotent stem cell biology, advanced techniques of cellular reprogramming, transdifferentiating and genome editing and how these technologies can be applied to model human diseases and to develop new therapeutics. Furthermore, we will discuss briefly the ethical considerations in stem cell research and therapy. Additionally, We will read and critically discuss primary research articles.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes
	Knowledge	
K1	Account for the basics of stem cells function in the body and for their usage in medical contexts.	K _P 1
K2	List the properties that define a stem cell and Compare and contrast tissue-specific stem cell types (e.g., blood, skin), and the basic mechanisms that regulate them	K _P 3
К3	Explain how stem cells are derived for scientific research;	K _P 1
	Skills	
S1	Understand how cell-cell signaling maintains stem cells and influences differentiation of specialized cells.	S _P 1
S2	Understand how defects in stem cell behavior can lead to medical problems;	S _P 3
S3	Understand complex molecular, cellular, and genetic techniques used to investigate stem cell biology; such as Gene Therapy and CRISPER and Gene Editing	S _P 2
Competencie		
C1	Develop informed opinions of the science, policy, and ethics of modern applied stem cell biology.	C _P 2
C2	Analyze a body of research including primary literature, explain the applications and relevance of the findings, and describe potential future directions of the research topic.	C _P 3

Learning Resources

Course toytheel	The Science of Stem Cells
Course textbook	
	Author(s): Jonathan M. W. Slack, 2018
	ISBN:9781119235156 Online ISBN:9781119235293
	Publisher : John Wiley & Sons, Inc.
	CRISPR Gene Editing : Methods and Protocols
	Authors: Aarhus, Denmark and Yonglun Luo
	ISSN 1064-3745 ISSN 1940-6029 (electronic)
	Publisher: Springer, part of Springer Nature 2019
Supporting References	Most of readings will be from primary research articles, review articles, selected book chapters and will be posted on Microsoft teams channel. <u>Recent literature(suggested readings and web sites required for</u>
	assignments through Philadelphia library resources)
Supporting websites	https://stemcells.nih.gov/info/basics/1.htm
	https://www.clinicaltrials.gov/

	https://www.	fda.gov/		
Teaching Environment	Classroom	□ laboratory	⊠Learning platform	□Other

Meetings and subjects timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
1	 Introduction to cell Biology-Stem cells facts and fiction Over view: Promise of stem cells in mitigating human disease, syndromes and injuries, modeling disease states, gene/cell therapies, tissue regeneration and bioengineering 	lectures + learning platform + Discussion + flipped Class	Revision Background related to topic Assessment	Chapter 1 Related e - supplement material + articles
2	History of stem cells Definition of stem cell terminology, stem cells in embryonic and adult tissues • Hierarchy of molecules-genes-cells-	lectures + learning platform + Discussion + flipped Class	Assessment	Chapter 4 Related e -
3	 tissues-organisms Regulatory signals that alter gene expression, cell structure, function, differentiation and cell division Student seminar + discussion Genome Structure, Chromatin and the Nucleosome 	Lecture problem solving based learning	Assessment Article assigned	supplement material + articles
4	Human Embryonic Stem Cells Student seminars+ discussion	Lectures+ , problem solving based learning	Presentation According to assigned schedule	(<u>https://stem</u> <u>cells.nih.gov</u> /info/basics/ <u>1.htm</u>
5	Paper presentation	Lectures+	Assessment	
6	Inducing pluripotencyReprogrammingTransdifferentiation:Historyandtechnology:Differentiation from Stem CellNiches:Skin, Hair follicle andIntestinal Stem Cells• Overview of skin and hair folliclecell biology and physiology• Skin/hair stem cells andexperimental manipulation to treatdisorders• Overview of intestinal organstructure, villi, intestinal cell locationsand differentiationpathway.	, problem solving based learning Flipped class	Article assigned	Related e - supplement material + articles

	- Deletionship - finte-tip 1 (11			
	• Relationship of intestinal stem cells			
	to the normal microbiome and to			
	physiological			
	dysfunction such as bowel disorders.			
	Student seminars+ discussion			
	Epigenetic	Lectures+	Assessment	Scudellari,
	Student seminars+ discussion	, problem		Megan "A
7		solving based		decade of
/		learning		iPS cells"
				Nature, 534:
				310-312.
8	Hematopoietic Stem Cells	Lectures+	Assessment	
	Stem Cell Therapies: Hematopoietic	, problem	Article	
	and Bone Stem Cells	solving based	assigned	
	Midterm	learning		Reardon,
	Hematopoietic stem cells,	ieuning		Sara
	differentiation			"Leukaemia
	Pathways			success
	• Lymphoid vs myeloid cell pathways			heralds
9	and stem cells			waves of
	Mesenchymal stem cells			gene-editing
	 Current practices using patient's 			therapies"
				Nature, 527:
	own cells for gene therapy			146-147.
	• Leukemia therapies with stem cells			
	• Ethics of gene therapy			
	Student seminars+ discussion	T 4		
10	Therapeutic Prospects and Tissue	Lectures+	Assessment	
10	Engineering	, problem	Article	
	Student seminars+ discussion	solving based	assigned	
11	Advances in genome editing: -	learning		
	Historical development of genome			
	editing methods/genome editing with			
	targeted nucleases (CRISPR)::			
	Genetic Engineering of Stem Cells			Related e -
	Molecular genetic strategies to			supplement
	regulate gene expression in stem cells			material +
	 Loss vs additional of expressed 			articles
12	genes			
	• Replacing mutated genes with wild			
	type versions			
	Use of CRISPR/Cas9 genomic			
	editing			
	• Ethics of gene editing and changing			
	cell genotypes			
	Student seminars+ discussion			
	Tissue Regeneration and	Lectures+	Assessment	Knoblich,
	Bioengineering of Tissues and Organs	, problem	Article	Juergen
	Overview of regeneration and	solving based	assigned	"Building a
	bioengineering of tissues	learning		brain in the
	• Role of stem cells in controlling	U		lab"
	tissue regeneration			Scientific
13	• Experimental strategies to			American,
	bioengineer tissues and organs from			Jan 2017.
	cultured stem cells			Bredenoord,
	• 3-D organoid cultures and tissue			AL, Clevers,
	scaffolds			H, Knoblich
	Characterization of functional			J (2017)
	Characterization of functional			J (2017)
	bioengineered organs			"Human

				tissues in a dish: The research and ethical implications of organoid technology" <i>Science</i> 355.
<u> 14 </u> 15	Use and Bioengineering of Cardiac and Muscle Stem Cells • Overview of cardiac and muscle cell biology and physiology • Cardiac stem cell markers, role in injury repair and potential use after heart attacks • Reprogramming induced pluripotent stem cells to generated cardiomyocytes • Treatment of heart injuries with normal or reprogrammed stem cell • Skeletal muscle stem cells and involvement of satellite cells in generating new muscle fibers and building of stronger muscles. • Stem cells and treatment of muscle disorders	Lectures+ , problem solving based learning	Assessment Article assigned	bioethics and the yuck factor" <i>Scientific</i> <i>American</i> <i>blog</i> , Sept 21, 2016. e- web resources related to topic
16	Final Exam			

* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology		
Data show, ppt Educated videos, Links related to topics ; Learning Analysis Journals ; presentations		
prepared by students,		
Communication skills		
Discussion assigned articles by collaborative learning Disucssion the latest technology		
Application of concepts learnt		
At the end of each topics students will expose to the medical and pharmaceutical applications of		
different concepts of Human cell technology		

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	Week 8	K1, S1 and C1
Various Assessments *	% 30	Each week	All
Final Exam	% 40	Week 16	All
Total	%100		

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Learning Assessment Number **Learning Outcomes** Method* Method** Knowledge K1 Lecture Quiz Account for the basics of stem cells function in videotaped problem the body and for their usage in medical contexts. solving assignment based learning **K2** Lecture Quiz List the properties that define a stem cell and problem videotaped Compare and contrast tissue-specific stem cell solving assignment types (e.g., blood, skin), and the basic based mechanisms that regulate them learning collaborative learning **K3** Explain how stem cells are derived for scientific Lecture Quiz problem videotaped research: solving assignment based learning collaborative learning Skills Understand how cell-cell signaling Lecture Quiz **S1** problem videotaped maintains stem cells and influences solving based assignment differentiation of specialized cells. learning collaborative learning Understand how defects in stem cell behavior Lecture Ouiz **S2** problem videotaped can lead to medical problems; solving based assignment learning collaborative learning flipped Class **S3** Understand complex molecular, cellular, and Lecture Quiz problem videotaped genetic techniques used to investigate stem cell solving based assignment biology; such as Gene Therapy and CRISPER learning and Gene Editing collaborative learning **Competencies** Develop informed opinions of the science, **C1** Quiz Lecture problem policy, and ethics of modern applied stem cell videotaped solving based assignment biology. learning collaborative learning flipped Class

Alignment of Course Outcomes with Learning and Assessment Methods

C2 Analyze a body of research literature, explain the applie of the findings, and describ directions of the research to	d relevance problem video
--	---------------------------

* includes: Lecture, flipped Class, project- based learning , problem solving based learning, collaborative learning

** includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Course Polices

Policy	Policy Requirements				
Passing Grade	The minimum passing grade for the course is (50%) and the minimum				
	final mark recorded on transcript is (35%).				
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from the an exam or assessment due date. A student who has an excuse for missing a final exam should submit 				
	the excuse to the dean within three days of the missed exam date.				
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and seven lectures (S,T,R). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.				
Academic Honesty	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as: cheating, plagiarism (academic theft), collusion, and violating intellectual property rights.				

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Кр3	Understand the molecular techniques including: immunological techniques, gene cloning, polymerase chain reaction, DNA sequencing, gene editing, blotting and nucleic acids hybridizations along with the basic skills of laboratory organization and management.	Human cell technology	Comprehensive exam	%) students will achieve 68% and more based on assessment rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment		
Kp3	Comprehensive questions (10 marks included in the final exam)		

criteria	score				
	4	3	2	1	
Concept	The answers given indicate a thorough understanding of the concept	The answers given indicate a less comprehensive understanding of the concept	The answers given indicate misconceptions	The answers given indicate the student are not understand the concept	
Comprehensive	The answers given indicate the ability to relate one information to another, comprehensively	The answers given indicate the ability to relate one information to another , partly	The answers given indicate less ability to relate one information to another	The answers given indicate not comprehensive	
Language structure	The answers given in accurate ,short ,and clear sentences	The answers given in accurate and short sentences ,but clear	The answers given in short sentences , but not accurate nor clear	The answers are not given in accurate , short , and clear sentences	